If tan a+ cot a=4 then find the value of tan^4a+cot^4a=?
Answers
Answered by
7
Given
→ tanA + cotA = 4
Squaring both sides we get,
→ tan²A + cot²A + 2(tanA)(cotA) = 16
→ tan²A + cot²A + 2 = 16
→ tan²A + cot²A = 14
Squaring both sides we get,
→ tan⁴A + cot⁴A + 2(tan²A)(cot²A) = 196
→ tan⁴A + cot⁴A = 196 - 2
→tan⁴A + cot⁴A = 194
Answer: 194
Answered by
2
Given
→ tanA + cotA = 4
Squaring both sides we get,
→ tan²A + cot²A + 2(tanA)(cotA) = 16
→ tan²A + cot²A + 2 = 16
→ tan²A + cot²A = 14
Squaring both sides we get,
→ tan⁴A + cot⁴A + 2(tan²A)(cot²A) = 196
→ tan⁴A + cot⁴A = 196 - 2
→tan⁴A + cot⁴A = 194
Answer: 194
Hope it helps you!!!
Similar questions
Social Sciences,
6 months ago
Hindi,
6 months ago
English,
6 months ago
Math,
1 year ago
Biology,
1 year ago