Math, asked by ghost0boyplays, 1 month ago

If tan A : cot B=1 : 2, then cos(A+B) : cos(A-B)​

Answers

Answered by senboni123456
0

Answer:

Step-by-step explanation:

We have,

\tt{\dfrac{tan(A)}{cot(B)}=\dfrac{1}{2}}

\sf{tan(A)\,tan(B)=\dfrac{1}{2}\,\,\,\,\,\,\,...(1)}

Now, we have,

\tt{\dfrac{cos(A+B)}{cos(A-B)}}

\sf{=\dfrac{cos(A)\,cos(B)-sin(A)\,sin(B)}{cos(A)\,cos(B)+sin(A)\,sin(B)}}

Divide num. and den. by cos(A).cos(B)

\sf{=\dfrac{\dfrac{cos(A)\,cos(B)-sin(A)\,sin(B)}{cos(A)\,cos(B)}}{\dfrac{cos(A)\,cos(B)+sin(A)\,sin(B)}{cos(A)\,cos(B)}}}

\sf{=\dfrac{1-tan(A)\,tan(B)}{1+tan(A)\,tan(B)}}

From (1), we get,

\sf{=\dfrac{1-\dfrac{1}{2} }{1+\dfrac{1}{2}}}

\sf{=\dfrac{\dfrac{2-1}{2} }{\dfrac{2+1}{2}}}

\sf{=\dfrac{\dfrac{1}{2} }{\dfrac{3}{2}}}

\sf{=\dfrac{1}{3}}

Similar questions