Math, asked by ajobajith, 9 months ago

if tan A equal to root 2 then the value of Cos A minus sin a by Cos A + sin a is​

Answers

Answered by ydevender928
1

Answer:

Tan A=√2

sinA/cosA=√2

sinA=√2×cosA

Answered by jitumahi435
2

\dfrac{\cos A-\sin A}{\cos A+\sin A} = \dfrac{1-\sqrt{2}}{1+\sqrt{2}} or, - 3 + 2\sqrt{2}

Step-by-step explanation:

We have,

\tan A = \sqrt{2}

To find, the value of \dfrac{\cos A-\sin A}{\cos A+\sin A} = ?

\dfrac{\cos A-\sin A}{\cos A+\sin A}

Dividing numerator and denominator by \cos A, we get

= \dfrac{\dfrac{\cos A-\sin A}{\cos A} }{\dfrac{\cos A+\sin A}{\cos A}}

= \dfrac{1-\tan A}{1+\tan A}

Put \tan A = \sqrt{2}, we get

= \dfrac{1-\sqrt{2}}{1+\sqrt{2}}

Rationalizing numerator and denominator, we get

= \dfrac{1-\sqrt{2}}{1+\sqrt{2}}\times \dfrac{1-\sqrt{2}}{1-\sqrt{2}}

= \dfrac{(1-\sqrt{2})^2}{1^2-\sqrt{2}^2}

Using the algebraic identity,

a^{2} -b^{2} = (a + b) (a - b) and

(a-b)^{2} = a^{2} +b^{2} -2ab

= \dfrac{1^2+\sqrt{2}^2-2(1)(\sqrt{2})}{1-2}

= \dfrac{1+2-2\sqrt{2}}{1-2}

= \dfrac{3-2\sqrt{2}}{-1}

= - 3 + 2\sqrt{2}

\dfrac{\cos A-\sin A}{\cos A+\sin A} = \dfrac{1-\sqrt{2}}{1+\sqrt{2}} or, - 3 + 2\sqrt{2}

Similar questions