Math, asked by adi123rau456, 2 months ago

If tan a = k tanp, prove that (k+ 1) sin (a - b) = (k - 1) sin(a+b).​

Answers

Answered by mathdude500
1

Appropriate Question :-

If tana = k tanb, prove that (k + 1) sin(a - b) = (k - 1) sin(a + b).

\large\underline{\bf{Solution-}}

Given that,

\rm :\longmapsto\:tana = k \: tanb

\rm :\longmapsto\:\dfrac{tana}{tanb}  = k

\rm :\longmapsto\:\dfrac{sina \: cosb}{cosa \: sinb}  = \dfrac{k}{1}

 \:  \:  \:  \: \red{\bigg \{ \because \: tanx = \dfrac{sinx}{cosx} \bigg \}}

On applying Componendo and Dividendo, we get

\rm :\longmapsto\:\dfrac{sina \: cosb \:  +  \: cosa \: sinb}{sina \: cosb \:  -  \: cosa \: sinb}  = \dfrac{k + 1}{k - 1}

 \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \:\dfrac{a}{b}  = \dfrac{c}{d}  \: then \: \dfrac{a + b}{a - b}  = \dfrac{c + d}{c - d} \:  \bigg \}}

\rm :\longmapsto\:\dfrac{sin(a + b)}{sin(a - b)}  = \dfrac{k + 1}{k - 1}

\rm :\longmapsto\:(k - 1) \: sin(a + b) = (k + 1) \: sin(a - b)

{{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

\green{\boxed{\bf{sin(x + y) = sinxcosy + sinycosx}}}

\green{\boxed{\bf{sin(x  -  y) = sinxcosy  -  sinycosx}}}

\green{\boxed{\bf{cos(x  -  y) = cosxcosy   +   sinxsiny}}}

\green{\boxed{\bf{cos(x  +  y) = cosxcosy - sinxsiny}}}

\green{\boxed{\bf{tan(x + y) = \dfrac{tanx + tany}{1 - tanx \: tany} }}}

\green{\boxed{\bf{tan(x -  y) = \dfrac{tanx  -  tany}{1  +  tanx \: tany} }}}

\green{\boxed{\bf{cot(x + y) = \dfrac{cotx \: coty - 1}{coty + cotx} }}}

\green{\boxed{\bf{cot(x  -  y) = \dfrac{cotx \: coty  +  1}{coty  -  cotx} }}}

Similar questions
Math, 10 months ago