Math, asked by lakshay4281, 1 year ago

if tan a = n tan b and sin a = m sin b prove that cos^2 a = (m^2 - 1)/(n^2 - 1).

Answers

Answered by Zaransha
4

So clearly in the question we have to eleminate angle b first,

and with tan and sin , we can use

cosec^2B - cot^2B = 1


So let's turn them into our required forms first,


 \tan(a)  = n \tan(b)  \\  \\  \frac{1}{ \tan(b) }  =  \frac{n}{ \tan(a) }  \\  \\  \cot(b)  =  \frac{n}{ \tan(a) }


Similarly, with sin

 \csc(b )  =  \frac{m}{ \sin(a) }


Square both sides of cot and cosec/csc


 { \cot }^{2}  b=  ({ \frac{n}{ \tan(a) } })^{2}  =  \frac{ {n}^{2} }{ { \tan}^{2}a }
-----(i)


Similarly,
 { \csc }^{2}b =  \frac{ {m}^{2} }{ { \sin }^{2}a }
-------(ii)

Subtracting (i) from (ii)

 { { \csc}^{2}b } -  { \cot }^{2} b =  \frac{ {m}^{2} }{ { \sin }^{2}a }  -  \frac{ {n}^{ 2 } }{{ \tan }^{2}a} \\  \\  \frac{ {m}^{2} }{ { \sin }^{2}a }  -  \frac{ {n}^{ 2 } }{{ \tan }^{2}a}  = 1 \\  \\  \\  \\  \frac{ {m}^{2}  { \tan}^{2}a -  {n}^{2}  { \sin }^{2}a  }{ { \sin }^{2}a \:  \:  { \tan }^{2}a  }  = 1 \\  \\  {m}^{2}  -  {n}^{2}  { \cos }^{2} a =  { \sin }^{2}a \\  \\   {m}^{2}  -  {n}^{2}  { \cos }^{2} a =1 -  { \cos }^{2} a \\  \\  {m}^{2}  - 1 =  { \cos}^{2}a( {n}^{2} - 1) \\  \\  { \cos }^{2} a =  \frac{ {m}^{2} - 1 }{ {n}^{2 } - 1 }



Hence proved.
Similar questions