if tan A=n tan B and sinA=m sin B, prove that cos²A=m²-1/n²-1
Answers
Answered by
0
We have to find cos
2
A in terms of m and n. This means that angle B is to be eliminated from the given relations.
Now,
tanA=n tanB ⇒ tanB=
n
1
tanA ⇒ cotB=
tanA
n
and
sinA=msinB ⇒ sinB =
m
1
sinA ⇒ cosecB =
sinA
m
Substituting the values of cotB and cosecB in cosec
2
B−cot
2
B=1, we get,
⇒
sin
2
A
m
2
−
tan
2
A
n
2
=1
⇒
sin
2
A
m
2
−
sin
2
A
n
2
cos
2
A
=1
⇒
sin
2
A
m
2
−n
2
cos
2
A
=1
⇒m
2
−n
2
cos
2
A=sin
2
A
⇒m
2
−n
2
cos
2
A=1−cos
2
A
⇒m
2
−1=n
2
cos
2
A−cos
2
A
⇒m
2
−1=(n
2
−1)cos
2
A
⇒
n
2
−1
m
2
−1
=cos
2
A
Answered by
8
Answer:
i am sorry
i dont know
sorryyyyyyy
i hope half you
Attachments:
Similar questions