If tan A = n tanB and sinA = m sinB, then prove that cos^(2) = (m^2 - 1)/(n^2 - 1)
Answers
Answered by
4
Given:
- tan A = n tanB
- sinA = m sinB
To be prove:
We have to find the in terms of m and n.
So, we have to eliminate ∠B from the given relations.
Now,
And also,
We know that
So,
Substituting the values of and , we will get,
⇒ m² - n² cos²A = 1 - cos²A [∴ sin²A = 1 - cos²A]
⇒ m² - 1 = n² cos²A - cos²A
⇒ m² - 1 = cos²A (n² - 1)
Hence proved.
Trigonometric identities -
- sin²Ф + cos²Ф = 1
- sec²Ф = 1 + tan²Ф
- cosec²Ф = cot²Ф + 1
EliteSoul:
Nice!
Similar questions
Math,
4 months ago
Math,
4 months ago
Social Sciences,
4 months ago
Social Sciences,
9 months ago
English,
9 months ago
English,
1 year ago
Science,
1 year ago