if tan A =n tanB
sin A =m sin B
prove Cos²A =m²-1/n²-1
Answers
Answered by
2
Answer:
given
tanA = ntanB and sinA = msinB
squaring...
sin^2A = m^2 sin^2B
sin^2B = sin^2A/m^2
cos^2B = 1 - sin^2A/m^2
now
tan^2A = n^2 tan^2B
tan^2B = tan^2A/n^2
sin^2B/cos^2B = sin^2A/n^2cos^2A
putting the values of sin^2B and cos^2B, we have
(sin^2A/m^2)/(1-sin^2A/m^2) = sin^2A/n^2cos^2A
1/(m^2 - sin^2A) = 1/n^2cos^2A
n^2cos^2A = m^2 - sin^2A
n^2cos^2A = m^2 - 1 + cos^2A
n^2cos^2A - cos^2A = m^2 - 1
cos^2A (n^2 - 1) = m^2 - 1
cos^2A = (m^2 - 1)/(n^2 - 1)
proved
Similar questions