If tan A = ntan B and sin A=m sin B ,prove that cos^2A =m^2-1/n^2-1
Answers
Answered by
0
Answer:
Step-by-step explanation:
SinA = m Sin B ,
Sin A/ Sin B = m and
tan A= n tan B,
tan A/tan B= n or
Sin A/ cos A/Sin B/cos B= n ,
SinA Cos B / Cos A. Sin B= n
m2 -1/ n2 -1 = (Sin A / Sin B )2 -1/(Sin ACos B /Cos A Sin B)2 -1
= Sin2A/ Sin2B -1/ Sin2ACos2B/Cos2ASin2B -1
= Sin2A-Sin2B/ Sin2B/Sin2ACos2B - Cos2A Sin2B/ Cos2A Sin2B
= Sin2A - Sin2B x Cos2A Sin2B/Sin2B (Sin2A Cos2B - Cos2A Sin2B)
= Sin2A - Sin2B x Cos2A/ Sin2A(1- sin2B) - (1-Sin2A) Sin2B
= (Sin2A - Sin 2B ) x Cos2A /Sin2A - Sin2A Sin2B - Sin2B +Sin2A Sin2B
= (Sin2A - Sin2B) x Cos2A/ ( Sin2A - Sin2B)
= Cos 2A
Similar questions