if tan A root 2-1 show that tan A/1+tan square
Answers
Answered by
0
Answer:
tanA= √2-1-----(1)
i) 1+ tan²A
= 1+(√2-1)²
= 1+(√2)²+1²-2*√2*1
/* (a-b)² = a²-2ab+b² * /
= = 1+2+1-2√2
= 4-2√2
= 2*2-2√2
= 2*√2*√2-2√2
Take 2√2 common, we get
= 2√2(√2-1) ----(2)
Now ,
LHS=
\frac{tanA}{(1+tan^{2}A)}
(1+tan
2
A)
tanA
= \frac{(\sqrt{2}-1)}{2\sqrt{2}(\sqrt{2}-1)}
2
2
(
2
−1)
(
2
−1)
/* from (1) and (2) */
after cancellation, we get
= \frac{1}{2(\sqrt{2})}
2(
2
)
1
/* Rationalising the denominator, we get
= \frac{\sqrt{2}}{2\sqrt{2}\times\sqrt{2}}
2
2
×
2
2
= \frac{\sqrt{2}}{2\times2}
2×2
2
= \frac{\sqrt{2}}{4}
4
2
= RHS
Therefore,
\frac{tanA}{(1+tan^{2}A)}
(1+tan
2
A)
tanA
= \frac{\sqrt{2}}{4}
4
2
••••
Step-by-step explanation:
HOPE IT HELP YOU
PLEASE SUPPORT ME
Similar questions