Math, asked by pradipghosh23, 9 months ago

if tan a + sec a =2/root 3 find the value of sin a ​

Answers

Answered by senboni123456
0

Answer:

 \frac{1}{7}

Step-by-step explanation:

Given,

 \sec( \alpha ) +  \tan( \alpha ) =  \frac{2}{ \sqrt{3} }   ..........(i)

 =  \frac{1}{ \sec( \alpha ) -  \tan( \alpha )  }  =  \frac{2}{ \sqrt{3} }

 =   \frac{ \sec( \alpha ) +  \tan( \alpha )  }{ ({ \sec( \alpha )) }^{2}   -  ( \tan( \alpha ))^{2}  }  =  \frac{2}{ \sqrt{3} }

 =  \frac{ \sec( \alpha ) +  \tan( \alpha )  }{( \sec( \alpha ) +  \tan( \alpha )) \times ( \sec( \alpha ) -  \tan( \alpha ))    }  =  \frac{2}{ \sqrt{3} }

 =  \sec( \alpha  )  -  \tan( \alpha )  =  \frac{ \sqrt{3} }{2} .....(ii)

Now, adding (i) and (ii), we get

 = sec( \alpha )  = \frac{7}{4 \sqrt{3} }

 =  \cos( \alpha )  =  \frac{4 \sqrt{3} }{7}

so,

 \sin( \alpha )  =  \sqrt{1 - (  \cos( \alpha ) )^{2}  }

=

 \frac{1}{7}

Similar questions