IF TAN A+ SEC A=3 SO WHAT IS THE VALUE OF SIN A
Answers
Answered by
1
heya!!
refer to given attachment please
refer to given attachment please
Attachments:
ASIFRAJA:
sorry bro your answer is wrong. the answer is 4/5
Answered by
3
Since we have to find the value of sinA, we have to convert the equation in terms of sinA.
We have,
tanA + secA = 3
⇒ sinA/cosA + 1/cosA = 3
⇒ (sinA + 1)/cosA = 3
⇒ (sinA + 1) = 3 cosA
⇒ sinA + 1 = 3 √(1-sin²A)
⇒ (sinA + 1)² = 9 (1 - sin²A)
⇒ sin²A + 2sinA + 1 = 9 - 9sin²A
⇒ 10sin²A + 2 sinA -8 = 0
⇒ 5 sin²A + sinA -4 = 0
⇒ 5sin²A + 5sinA -4sinA -4 = 0
⇒ 5sinA(sinA +1) - 4(sinA + 1) = 0
⇒ (5sinA -4)(sinA+1) = 0
∴ Either,
5sinA - 4 = 0 or sinA +1 = 0
sinA = 4/5 or sinA = -1
We have,
tanA + secA = 3
⇒ sinA/cosA + 1/cosA = 3
⇒ (sinA + 1)/cosA = 3
⇒ (sinA + 1) = 3 cosA
⇒ sinA + 1 = 3 √(1-sin²A)
⇒ (sinA + 1)² = 9 (1 - sin²A)
⇒ sin²A + 2sinA + 1 = 9 - 9sin²A
⇒ 10sin²A + 2 sinA -8 = 0
⇒ 5 sin²A + sinA -4 = 0
⇒ 5sin²A + 5sinA -4sinA -4 = 0
⇒ 5sinA(sinA +1) - 4(sinA + 1) = 0
⇒ (5sinA -4)(sinA+1) = 0
∴ Either,
5sinA - 4 = 0 or sinA +1 = 0
sinA = 4/5 or sinA = -1
Similar questions