If tan A+ sin A = m and tan A - sin A = n, prove that:
(1) (m² - n²)² = 16mn
(2) m² - n² = 4√(mn)
Answers
⧪ Given :
⊚ tan A + sin A = m
⊚ tan A - sin A = n
⧪ To Prove :
➀ m² - n² = 4√(mn)
➁ (m² - n²)² = 16mn
⧪ Proof :
m = tan A + sin A
Squaring on both sides ,
➠ m² = (tan A + sin A)²
➠ m² = tan²A + sin²A + 2 tan A sin A
n = tan A - sin A
Squaring on both sides ,
➠ n² = (tan A - sin A)²
➠ n² = tan²A + sin²A - 2 tan A sin A
★ ════════════════════ ★
Calculate m² - n² ( LHS )
➙ tan²A + sin²A + 2 tan A sin A - (tan²A + sin²A - 2 tan A sin A)
➙ 4 tan A sin A
➙
➙
- sin²A = 1 - cos²A
➙
➙
- a² - b² = (a + b)(a - b)
➙
- m = tan A + sin A [Given]
- n = tan A - sin A [Given]
➙ ( RHS )
So , m² - n² = 4√(mn) __ ➀
★ ════════════════════ ★
Squaring on both sides ,
➤ (m² - n²)² = (4√(mn))²
➤ (m² - n²)² = 16mn __ ➁
Hence proved
★ ════════════════════ ★
Given : -
tan A + sin A = m
tan A - sin A = n
Required to prove : -
- ( m² - n² )² = 16mn
- m² - n² = 4√( mn )
Identity used : -
Sin² A + cos² A = 1
Solution : -
tan A + sin A = m
tan A + sin A = m tan A - sin A = n
we need to prove that ;
- ( m² - n² )² = 16 mn
- m² - n² = 4√( mn )
So,
Let's prove the 1st one ,
( m² - n² )² = 16 mn
Consider the LHS part
➜ ( m² - n² )²
➜ m² - n² = ( m + n ) ( m - n )
➜ ( [ m + n ] [ m - n ] )²
➜ ( [ tan A + sin A + tanA - sin A ] [ tan A + sin A - ( tan A - sin A ) ] )²
➜ [ ( tan A + sin A + tan A - sin A ) ( tan A + sin A - tan A + sin A ) ]²
➜ [ ( tan A + tan A ) ( sin A + sin A ) ]²
➜ [ 2 tan A 2 sin A ]²
➜ [ 4 tan A sin A ]²
➜ 16 tan² A sin² A
Consider the RHS part
16 mn
➜ 16 ( tan A + sin A ) ( tan A - sin A )
➜ 16 ( tan² A - sin² A )
[ From : ( a + b ) ( a - b ) = a² - b2 ]
➜ 16 ( sin²A/ cos²A - sin²A )
➜ 16 ( sin²A - sin²Acos²A/ cos²A )
Taking sin² A common
➜ 16 ( sin² A ( 1 - cos²A )/cos²A )
➜ 16 ( sin² A / cos² A ( sin²A ) )
From the identity sin² A + cos² A = 1 ,
sin² A = 1 - cos² A
➜ 16 ( sin²A / cos²A ( sin² A ) )
➜ 16 tan² A sin² A
LHS = RHS
Hence proved !
Let's prove the 2nd one ,
m² - n² = 4 √( mn )
Consider the LHS part
➜ m² - n²
➜ ( m + n ) ( m - n )
From the identity ;
( a² - b² ) = ( a + b ) ( a - b )
➜ ( tan A + sin A + tan A - sin A ) ( tan A + sin A - [ tan A - sin A ] )
➜ ( tan A + sin A + tan A - sin A ) ( tan A + sin A - tan A + sin A )
➜ ( 2 tan A ) ( 2 sin A )
➜ 4 tan A sin A
Consider the RHS Part
➜ 4 √ ( mn )
➜ 4 √ [ ( tan A + sin A ) ( tan A - sin A ) ]
➜ 4 √ [ tan² A - sin² A ]
From the identity ; .
( a + b ) ( a - b ) = a² - b²
➜ 4 √ [ sin² A / cos ² A - sin² A ]
➜ 4 √ [ sin² A - sin² A cos² A / cos² A ]
Taking sin² A as common
➜ 4 √ [ sin² A / cos² A ( 1 - cos² A ) ]
➜ 4 √ [ sin² A / cos² A ( sin² A ) ]
Since,
sin A / cos A = tan A
➜ 4√ [ tan² A sin² A ]
➜ 4 √ [ tan A sin A ]²
➜ 4 tan A sin A
LHS = RHS
Hence proved !