Math, asked by Anonymous, 8 months ago

If tan A+ sin A = m and tan A - sin A = n, prove that:

(1) (m² - n²)² = 16mn
(2) m² - n² = 4√(mn)​

Answers

Answered by BrainlyIAS
73

Given :

⊚ tan A + sin A = m

⊚ tan A - sin A = n

To Prove :

 m² - n² = 4√(mn)​

 (m² - n²)² = 16mn

Proof :

m = tan A + sin A

Squaring on both sides ,

➠ m² = (tan A + sin A)²

m² = tan²A + sin²A + 2 tan A sin A

n = tan A - sin A

Squaring on both sides ,

➠ n² = (tan A - sin A)²

n² = tan²A + sin²A - 2 tan A sin A

★ ════════════════════ ★

Calculate m² - n²   ( LHS )

➙ tan²A + sin²A + 2 tan A sin A - (tan²A + sin²A - 2 tan A sin A)

➙ 4 tan A sin A

\sf 4\ \sqrt{(tan\ A.sin\ A)^2}

\sf 4\ \sqrt{(tan^2A.sin^2A)}

  • sin²A = 1 - cos²A

\sf 4\ \sqrt{tan^2A(1-cos^2A)}

\sf 4\ \sqrt{tan^2A-sin^2A}

  • a² - b² = (a + b)(a - b)

\sf 4\ \sqrt{(tan\ A+sin\ A)(tan\ A-sin\ A)}

  • m = tan A + sin A  [Given]
  • n = tan A - sin A  [Given]

\sf 4\ \sqrt{(mn)}  ( RHS )

So , m² - n² = 4√(mn) __

★ ════════════════════ ★

Squaring on both sides ,

➤ (m² - n²)² = (4√(mn))²

(m² - n²)² = 16mn __

\orange{\bigstar}  Hence proved  \green{\bigstar}

★ ════════════════════ ★


amitkumar44481: Great :-)
Answered by MisterIncredible
60

Given : -

tan A + sin A = m

tan A - sin A = n

Required to prove : -

  • ( m² - n² )² = 16mn

  • m² - n² = 4√( mn )

Identity used : -

Sin² A + cos² A = 1

Solution : -

tan A + sin A = m

tan A + sin A = m tan A - sin A = n

we need to prove that ;

  • ( m² - n² )² = 16 mn

  • m² - n² = 4√( mn )

So,

Let's prove the 1st one ,

( m² - n² )² = 16 mn

Consider the LHS part

➜ ( m² - n² )²

➜ m² - n² = ( m + n ) ( m - n )

➜ ( [ m + n ] [ m - n ] )²

➜ ( [ tan A + sin A + tanA - sin A ] [ tan A + sin A - ( tan A - sin A ) ] )²

➜ [ ( tan A + sin A + tan A - sin A ) ( tan A + sin A - tan A + sin A ) ]²

➜ [ ( tan A + tan A ) ( sin A + sin A ) ]²

➜ [ 2 tan A 2 sin A ]²

➜ [ 4 tan A sin A ]²

16 tan² A sin² A

Consider the RHS part

16 mn

➜ 16 ( tan A + sin A ) ( tan A - sin A )

➜ 16 ( tan² A - sin² A )

[ From : ( a + b ) ( a - b ) = a² - b2 ]

➜ 16 ( sin²A/ cos²A - sin²A )

➜ 16 ( sin²A - sin²Acos²A/ cos²A )

Taking sin² A common

➜ 16 ( sin² A ( 1 - cos²A )/cos²A )

➜ 16 ( sin² A / cos² A ( sin²A ) )

From the identity sin² A + cos² A = 1 ,

sin² A = 1 - cos² A

➜ 16 ( sin²A / cos²A ( sin² A ) )

16 tan² A sin² A

LHS = RHS

Hence proved !

Let's prove the 2nd one ,

m² - n² = 4 √( mn )

Consider the LHS part

➜ m² - n²

➜ ( m + n ) ( m - n )

From the identity ;

( a² - b² ) = ( a + b ) ( a - b )

➜ ( tan A + sin A + tan A - sin A ) ( tan A + sin A - [ tan A - sin A ] )

➜ ( tan A + sin A + tan A - sin A ) ( tan A + sin A - tan A + sin A )

➜ ( 2 tan A ) ( 2 sin A )

4 tan A sin A

Consider the RHS Part

➜ 4 √ ( mn )

➜ 4 √ [ ( tan A + sin A ) ( tan A - sin A ) ]

➜ 4 √ [ tan² A - sin² A ]

From the identity ; .

( a + b ) ( a - b ) = a² - b²

➜ 4 √ [ sin² A / cos ² A - sin² A ]

➜ 4 √ [ sin² A - sin² A cos² A / cos² A ]

Taking sin² A as common

➜ 4 √ [ sin² A / cos² A ( 1 - cos² A ) ]

➜ 4 √ [ sin² A / cos² A ( sin² A ) ]

Since,

sin A / cos A = tan A

➜ 4√ [ tan² A sin² A ]

➜ 4 √ [ tan A sin A ]²

4 tan A sin A

LHS = RHS

Hence proved !


amitkumar44481: Perfect :-)
Similar questions