Math, asked by Anonymous, 8 months ago

If tan A+ sin A = m and tan A - sin A = n, prove that

(1) (m² - n²)² = 16mn
(2) m² - n² = 4√(mn)​

Answers

Answered by Anonymous
1

\huge\green{ANSWER:-}

Given : -

tan A + sin A = m

tan A - sin A = n

Required to prove : -

  • ( m² - n² )² = 16mn

  • m² - n² = 4√( mn )

Identity used : -

Sin² A + cos² A = 1

Solution : -

tan A + sin A = m

tan A + sin A = m tan A - sin A = n

we need to prove that ;

  • ( m² - n² )² = 16 mn

  • m² - n² = 4√( mn )

So,

Let's prove the 1st one ,

( m² - n² )² = 16 mn

Consider the LHS part

➜ ( m² - n² )²

➜ m² - n² = ( m + n ) ( m - n )

➜ ( [ m + n ] [ m - n ] )²

➜ ( [ tan A + sin A + tanA - sin A ] [ tan A + sin A - ( tan A - sin A ) ] )²

➜ [ ( tan A + sin A + tan A - sin A ) ( tan A + sin A - tan A + sin A ) ]²

➜ [ ( tan A + tan A ) ( sin A + sin A ) ]²

➜ [ 2 tan A 2 sin A ]²

➜ [ 4 tan A sin A ]²

 16 tan² A sin² A

Consider the RHS part

16 mn

➜ 16 ( tan A + sin A ) ( tan A - sin A )

➜ 16 ( tan² A - sin² A )

[ From : ( a + b ) ( a - b ) = a² - b2 ]

➜ 16 ( sin²A/ cos²A - sin²A )

➜ 16 ( sin²A - sin²Acos²A/ cos²A )

Taking sin² A common

➜ 16 ( sin² A ( 1 - cos²A )/cos²A )

➜ 16 ( sin² A / cos² A ( sin²A ) )

From the identity sin² A + cos² A = 1 ,

sin² A = 1 - cos² A

➜ 16 ( sin²A / cos²A ( sin² A ) )

 16 tan² A sin² A

LHS = RHS

Hence proved !

Let's prove the 2nd one ,

m² - n² = 4 √( mn )

Consider the LHS part

➜ m² - n²

➜ ( m + n ) ( m - n )

From the identity ;

( a² - b² ) = ( a + b ) ( a - b )

➜ ( tan A + sin A + tan A - sin A ) ( tan A + sin A - [ tan A - sin A ] )

➜ ( tan A + sin A + tan A - sin A ) ( tan A + sin A - tan A + sin A )

➜ ( 2 tan A ) ( 2 sin A )

➜ 4 tan A sin A

Consider the RHS Part

➜ 4 √ ( mn )

➜ 4 √ [ ( tan A + sin A ) ( tan A - sin A ) ]

➜ 4 √ [ tan² A - sin² A ]

From the identity ;

.

( a + b ) ( a - b ) = a² - b²

➜ 4 √ [ sin² A / cos ² A - sin² A ]

➜ 4 √ [ sin² A - sin² A cos² A / cos² A ]

Taking sin² A as common

➜ 4 √ [ sin² A / cos² A ( 1 - cos² A ) ]

➜ 4 √ [ sin² A / cos² A ( sin² A ) ]

Since,

sin A / cos A = tan A

➜ 4√ [ tan² A sin² A ]

➜ 4 √ [ tan A sin A ]²

➜ 4 tan A sin A

LHS = RHS

Hence proved !

Answered by Anonymous
0

m = tanA + SinA

n = tanA - SinA

Now ,

 (m + n) = 2tanA -----(1)

 (m - n) = 2SinA ------(2)

 mn = (tan²A - Sin²A)

 mn = (\frac{Sin²A}{Cos²A} - Sin²A)

 mn = Sin²A(\frac{1}{Cos²A} - 1)

 mn = Sin²A(\frac{1-Cos²A}{Cos²A})

 mn = Sin²A(\frac{Sin²A}{Cos²A})

 mn = Sin²A*tan²A -----(3)

Therefore ,

(m + n)(m - n)= 4tanA*SinA

(m² - n²)= 4√mn

Doing square both side-

(m² - n²)²= 16mn

Similar questions