Math, asked by satendersehrawat167, 1 year ago

if tan A+sin A = m and tan A - sin A=n then

(m^2-n^2)^2/mn

Answers

Answered by Anonymous
1

m =tanA + sinA

n =tanA - sinA

 m^{2}-n^{2} =(tanA + sinA)^{2} - (tanA-sinA)^{2}

 m^{2}-n^{2} =4tanA.sinA

 mn = (tanA+sinA)(tanA-sinA)

 mn = tan^{2}A-sin^{2}A

 mn = sin^{2}A(\frac{1}{cos^{2}A}-1)

 mn = sin^{2}A(\frac{1-cos^{2}A}{cos^{2}A})

 mn = sin^{2}A(\frac{sin^{2}A}{cos^{2}A})

 mn = sin^{2}A.tan^{2}A

 m^2- n^2 =4 sin A tan A

 m^{2}-n^{2} =4\sqrt{mn}

Similar questions