Math, asked by BrainlyXQueen, 8 months ago

If tan A+ sin A = m and tan A -sin A = n, then prove that m^2- n^2 = 4√mn​

Answers

Answered by Intelligentcat
86

Answer:

\huge\bold\star\red{QuEsTiOn}\star

If tan A+ sin A = m and tan A -sin A = n, then prove that m^2- n^2 = 4√mn

\Large{\underline{\underline{\bf{SoLuTion:-}}}}

Given

tanA + sinA = m

and, tanA - sinA = n

To Prove

m² - n² = 4√mn

PROOF

LHS:

m² - n²

= (tanA + sinA)² - (tanA - sinA)²

= (tan²A + sin²A + 2tanAsinA) - (tan²A + sin²A - 2tanAsinA)

= 4tanAsinA

RHS:

4√mn = 4√(tanA + sinA)(tanA - sinA)

= 4√(tan²A)(sin²A)

= 4tanAsinA

Implies,LHS = RHS

Hence,

\mathfrak{\huge{\orange{\underline{\underline{Proved :}}}}}

Similar questions