Math, asked by suhara1953, 8 months ago

if tan A+sin A = m and tan A - sin A = n then prove the following m
 {m}^{2}  -  {n}^{2}  =  \sqrt{mn}

Answers

Answered by sandy1816
3

Answer:

your answer attacted in the photo

Attachments:
Answered by sk181231
2

\bf\huge\red{\mid{\overline{\underline{AnswEr}}}\mid}

m {}^{2}  - n {}^{2}  = (m + n)(m - n)

L.H.S. = (tan \:  θ  + sin θ  + tan θ  - sin θ ) \\ (tan θ  + sin θ  - tan θ  + sin θ )

 = ( \: 2 \: tan \:  θ )(2 \: sin θ )

 = 4 \: tan θ  \: sin θ 

 = 4 \sqrt{tan {}^{2}  θ \: sin {}^{2} \: θ }

 = 4 \sqrt{tan {}^{2}(1 - sin {}^{2}  θ )}

 = 4 \sqrt{tan {}^{2}  θ  - tan {}^{2}  θ \: cos {}^{2}   θ }

 = 4 \sqrt{tan {}^{2}  θ  - sin {}^{2}  θ }

 = 4 \sqrt{(tan θ + sin  θ )(tan θ - sin  θ )}

 = 4 \sqrt{mn}  = <strong>R</strong><strong>.</strong><strong>H</strong><strong>.</strong><strong>S</strong><strong>.</strong>

Similar questions