Math, asked by tthhaakkuurr, 1 year ago

If tan a +sin a =m and tan a -sin a =n then show m^2-n^2=4√mn

Answers

Answered by saurabhsemalti
4

m = tana + sina \\ m {}^{2}  =  {tan}^{2} a +  {sin}^{2} a + 2tana \: sina \\ n {}^{2}  =  {tan}^{2} a +  {sin}^{2} a - 2tanasina \\ subtract \\  {m}^{2}  -  {n}^{2}  = 4tanasina.\\  {m}^{2} -  {n}^{2} = 4 {sin}^{2} a \div cosa ....(1) \\ now \: mn =  {tan}^{2} a -  {sin}^{2} a =  {sin}^{4}a \div  {cos}^{2} a \\  \sqrt{mn}  =  {sin}^{2} a \div cosa \\ put \: in \: (1) \\  {m}^{2}  -  {n}^{2}  = 4 \sqrt{mn}  \\ proved \\ mark \: it \: brainliest \: if \: helped \\ ..........
here is your complete answer
Similar questions