if tan A+sinA=m and A-sinA=n then show that m²-n²=4√mn
Answers
Answered by
1
Step-by-step explanation:
LHS
- (tanA+sinA)²-(tanA-sinA)²
- 4tanAsinA. :- (a+b)² - (a-b)²= 4ab
now prove RHS
4√(tanA+sinA)(tanA-sinA)
=4√(tan²A-sin²A) √[sin²A/cos²A-sin²A]
=4√sin²A-sin²A cos²A÷cosA=4
sinA/cosA. √1-cos²A
=4tanA. √sin²A cos²A÷cosA=4•sinA/cosA
1-cos²A. ✓sin²A= 4tanA sinA.
(m²-n²)=4√mn thus LHS=RHS proved
Similar questions