Math, asked by jagankrishnan2004, 10 months ago

If tan A + tan B = p ; cot A + cot B = q ; cot ( A + B ) = ?

Answers

Answered by Vishwanandinishah
1

Answer:

Step-by-step explanation:

Her u get...

Hope u understand...

Attachments:
Answered by Cosmique
3

Given :

\pink{\bullet}\;\sf{tan\;A+tan\;B=p}

\pink{\bullet}\;\sf{cot\;A+cot\;B=q\;\;\;...eqn(1)}

To find :

\pink{\bullet}\;\sf{cot(A+B) = ?}

Solution :

Given that,

\longrightarrow\sf{tan\;A+tan\;B=p}

\longrightarrow\sf{\dfrac{1}{cot\;A}+\dfrac{1}{cot\;B}=p}

\longrightarrow \sf{\dfrac{cot\;B+cot\;A}{cot\;A\;cot\;B}=p}

using equation (1)

\longrightarrow \sf{\dfrac{q}{cot\;A\;cot\;B}=p}

\longrightarrow \sf{cot\;A\;cot\;B=\dfrac{q}{p}\;\;\;....eqn(2)}

Now,

using trigonometric identity

\pink{\star}\;\;\boxed{\sf{cot(x+y)=\dfrac{cot\;x\;cot\;y-1}{cot\;x+cot\;y}}}

\longrightarrow\sf{\cot(A+B)=\dfrac{cot\;A\;cot\;B-1}{cot\;A+cot\;B}}

using equation (1) and (2)

\longrightarrow\sf{\cot(A+B)=\dfrac{\dfrac{q}{p}-1}{q}}

\longrightarrow\sf{\cot(A+B)=\dfrac{q-p}{p}\div q}

\longrightarrow\sf{\cot(A+B)=\dfrac{q-p}{p}\times \dfrac{1}{q}}

\longrightarrow\overbrace{\underbrace{\boxed{\sf{\red{\cot(A+B)=\dfrac{q-p}{pq}}}}}}\;\;\;\;\pink{\bigstar}

More related trigonometric identites

\implies\sf{cos(x+y)=cos\;x\;cos\;y-sin\;x\;sin\;y}

\implies\sf{cos(x-y)=cos\;x\;cos\;y+sin\;x\;sin\;y}

\implies\sf{sin(x+y)=sin\;x\;cos\;y+cos\;x\;sin\;y}

\implies\sf{sin(x-y)=sin\;x\;cos\;y-cos\;x\;sin\;y}

\implies\sf{tan(x+y)=\dfrac{tan\;x+tan\;y}{1-tan\;x\;tan\;y}}

\implies\sf{tan(x-y)=\dfrac{tan\;x-tan\;y}{1+tan\;x\;tan\;y}}

\sf{cot(x-y)=\dfrac{cot\;x\;cot\;y+1}{cot\;y-cot\;x}}

Similar questions