If tan A-tan B =x and cot B-cot A = y, the cot(A - B)is equal to
Answers
Answered by
1
Answer:
cot (A-B) = (x + y)/xy if tan A - tan B = x and cot B - cot A = y
Step-by-step explanation:
tan A - tan B = x
cot B - cot A = y
=> 1/tanB - 1/tanA = y
=> (tanA - tanB)/tanB.tanA = y
=> x/y = tanA.tanB
Cot(A - B) = 1/(tan(A - B)) = (1 + tanA.TanB)/(TanA - TanB)
= (1 + x/y)/(x)
= (y + x)/xy
= (x + y)/xy
cot (A-B) = (x + y)/xy
Answered by
4
cot (A-B) = (x + y)/xy if tan A - tan B = x and cot B - cot A = y
Step-by-step explanation:
tan A - tan B = x
cot B - cot A = y
=> 1/tanB - 1/tanA = y
=> (tanA - tanB)/tanB.tanA = y
=> x/y = tanA.tanB
Cot(A - B) = 1/(tan(A - B)) = (1 + tanA.TanB)/(TanA - TanB)
= (1 + x/y)/(x)
= (y + x)/xy
= (x + y)/xy
cot (A-B) = (x + y)/xy
Pls mark as brainliest
Similar questions