If tan A – tan B = x and cot B – cot A = y, then the value of cot (A – B) is
Answers
Answered by
1
4) (1/x) + (1/y)
Solution:
Given,
tan A – tan B = x….(i)
cot B – cot A = y
(1/tan B) – (1/tan A) = y
(tan A – tan B)/ (tan A tan B) = y
x/ tan A tan B = y {from (i)}
tan A tan B = x/y….(ii)
cot(A – B) = 1/tan(A – B)
= (1 + tan A tan B)/ (tan A – tan B)
= [1 + (x/y)]/ x {from (i) and (ii)}
= (y + x)/xy
= (y/xy) + (x/xy)
= (1/x) + (1/y)
Answered by
0
tan A - tan B = x
cot B - cot A = y
=> 1/tanB - 1/tanA = y
=> (tanA - tanB)/tanB.tanA = y
=> x/y = tanA.tanB
Cot(A - B) = 1/(tan(A - B)) = (1 + tanA.TanB)/(TanA - TanB)
= (1 + x/y)/(x)
= (y + x)/xy
= (x + y)/xy
cot (A-B) = (x + y)/xy
Similar questions
Computer Science,
2 months ago
Biology,
2 months ago
Social Sciences,
4 months ago
Math,
11 months ago
English,
11 months ago