If tan A-tan B=x; cot A-cot A =y
show that cot (A-B) = 1/x + 1/y
Answers
Answered by
2
Answer:
Cot(A-B) = cotACotB-1 / Cot + Cot B
= 1/x + 1/y
Step-by-step explanation:
Answered by
6
Answer:
Given:-
- tanA-tanB=x.
- CotB-CotA=y.
Prove that, cot (A-B)=1/x+1/y.
Explanation
_____________________________________
LHS,
=Cot (A-B)
[by formula].
=(CotA*CotB+1)/cotB-CotA.
=CotA*CotB/CotB-CotA+1/cotB-CotA.
=1/tanA*1/tanB/1/tanB-1/tanA+1/CotB-CotA.
=1/tanA*tanB/(tanA-tanB)/tanA*tanB+1/CotB-CotA.
1/tanA*tanB will be cancelled out.
so,
=1/(tanA-tanB)+1/(Cot B-Cot A).
=1/x+1/y.
=RHS.
Formula used.
______________________
- CotA=1/tanA.
- Cot(A-B)=CotA CotB+1/CotB-CotA.
Hope it will help you.
Similar questions