Math, asked by mitalimundhare, 7 months ago

if tan A =under root 3 and tan B=1/under root 3 then find the value of cot (A+B)

Answers

Answered by keshavkeahu420
7

Given, tan A=root3 and tan b=1/root 3

tan A=60degree and tanB=30 degree

So, A=60 degree and B = 30 degree.

cot (A+B)=cot(60+30)=city 90degree .

cot90degree =0

Answered by isha00333
1

Given:

\[\tan A = \sqrt 3 ,\tan B = \frac{1}{{\sqrt 3 }}\]

To find: the value of \[\cot \left( {A + B} \right)\].

Solution:

Find the value of  \[\cot A\].

\[\begin{array}{l}\tan A = \sqrt 3 \\ \Rightarrow \cot A = \frac{1}{{\tan A}}\end{array}\]

\[ \Rightarrow \cot A = \frac{1}{{\sqrt 3 }}\]

Find the value of \[\cot B\].

\[\begin{array}{l}\tan B = \frac{1}{{\sqrt 3 }}\\ \Rightarrow \cot B = \frac{1}{{\tan B}}\end{array}\]

\[ \Rightarrow \cot B = \frac{1}{{\frac{1}{{\sqrt 3 }}}}\]

\[ \Rightarrow \cot B = \sqrt 3 \]

Find the value of \[\cot \left( {A + B} \right)\].

Apply, \[\cot \left( {A + B} \right) = \frac{{\cot A\cot B - 1}}{{\cot B + \cot A}}\].

Substitute the values of cot A and cot B in above formulae.

\[ \Rightarrow \cot \left( {A + B} \right) = \frac{{\sqrt 3  \times \frac{1}{{\sqrt 3 }} - 1}}{{\sqrt 3  + \frac{1}{{\sqrt 3 }}}}\]

\[ \Rightarrow \cot \left( {A + B} \right) = \frac{0}{{\sqrt 3  + \frac{1}{{\sqrt 3 }}}}\]

\[ \Rightarrow \cot \left( {A + B} \right) = 0\]

Hence, the value of \[\cot \left( {A + B} \right)\] is 0.

Similar questions