Math, asked by atul147454, 1 year ago

if tan A = underroot 3 then what is tan 2A​

Answers

Answered by welcome101
2

Answer:

 \tan(a)  =  \sqrt{3}  \\ then \:  \tan(2a)  =  \tan(a + a)  =  \frac{ 2\tan(a)}{1 -  \tan {}^{2} (a)} =  \frac{2 \sqrt{3} }{1 - ( \sqrt{3}) {}^{2} }  =  \frac{2 \sqrt{3} }{(1 - 3)}  =  \frac{2 \sqrt{3} }{ - 2}  =  -  \sqrt{3}

Answered by Anonymous
3

Answer \:  \\  \\  \tan(a)  =  \sqrt{3}  \\  \\  \tan(a)  =  \tan(60)  \\  \\ a = 60 \\  \\ so \:  \:  \:  \:  \:  \:    \:  \tan(2a)  =  \tan(2 \times 60)   \\  \\  \tan(2a) =</p><p> \tan(120)  \\  \\  \tan(120)  =  \tan(90 + 30)  \\  \\  \tan(120)  =  -  \cot(30)  \\  \\  \tan(120)  = - \sqrt{3}  \\  \\ therefore \:  \:  \tan(2a)  =  - \sqrt{3}  \\  \\ NOTE \\  \:  \\  \tan(30)  =  \frac{1}{ \sqrt{3} }  \\  \\  \tan(90 + x)  =  -  \cot(x)

Similar questions