Math, asked by geethukrishna3718, 11 months ago

if tan alpha = 1/11 , tan beta = 5/6 prove that alpha + beta = 45°​

Answers

Answered by Anonymous
2

Answer:

Refer the attached picture.

Attachments:
Answered by Anonymous
1

\bigstar\boxed{\huge{\red{\mathfrak{Question}}}}\bigstar

_________________________

tan \:  \alpha  =  \frac{1}{11}  \\   tan \:  \beta  =  \frac{5}{6}

_________________________

\mathtt{\blue{\underline{\underline{To\:prove:}}}}

 \alpha  +  \beta  =  45°

_________________________

\mathtt{\green{\underline{\underline{Solution:}}}}

Tan A → 5/6 ----------( Given )

Tan B → 1/11 -----------( Given )

We know that :

tan( \alpha  +  \beta ) =  \frac{tan \:  \alpha  \:  + tan  \: \beta }{1 - tan \:   \alpha .tan \:  \beta  }

Put these values in it :

tan( \alpha  +  \beta ) =  \frac{ \frac{5}{6} +  \frac{1}{11}  }{1 -  \frac{5}{6}  . \frac{1}{11}   }

tan( \alpha  +  \beta ) =  \frac{ \frac{55 + 6}{66} }{ \frac{66 - 5}{66}  }

  tan( \alpha  +  \beta )= \frac{ \frac{61}{66} }{ \frac{61}{66} }

tan( \alpha  +  \beta ) = 1

We know that ,

Tan 45° = 1

tan( \alpha  +  \beta ) = tan \: 45°  \\  \\  \alpha  +  \beta  = 45°

\mathfrak{\huge{Hence\:Proved}}

Similar questions