Math, asked by shenapriyanka125, 10 months ago

if tan alpha=1 and tan beta=√3 evaluate cos alpha cos beta - sin alpha sin bheta​

Answers

Answered by Lazycrow
1

Answer:\frac{\sqrt{2}-\sqrt{6}  }{4}

Step-by-step explanation:

tanA = 1

=> A=45 deg  (tan45 = 1)

tanB = \sqrt{3}

=> B=60 deg  (tan60 =\sqrt{3})

putting values of A and B in cosAcosB-sinAsinB,

= cos45.cos60 - sin45.sin60

= \frac{1}{\sqrt{2} } x \frac{1}{2} -  \frac{1}{\sqrt{2} }x\frac{\sqrt{3} }{2}

=\frac{1}{\sqrt{2} } [ \frac{1}{2} - \frac{\sqrt{3} }{2}]

=\frac{1-\sqrt{3} }{2\sqrt{2} }= \frac{\sqrt{2}-\sqrt{6}  }{4}

Similar questions