if tan alpha = 1 then find cot alpha, sin alpha and sec alpha
pls answer....in a bit details
thank you in advance
Answers
Answered by
6
Given : tan α = 1
To find : sin α, sec α and cot α
Solution :
=> tan α = 1
Squaring both sides,
=> tan²α = 1
Apply formula :
- sec² α -1 = tan² α
=> sec²α -1 = 1
=> sec²α = 2
=> sec α =√2
=> sec α = 1/cos α
=> cos α = 1/√2
Squaring both sides
=> cos²α = 1/2
Apply formula :
- cos²α = 1- sin²α
=> 1 - sin²α = 1/2
=> 1-1/2 = sin²α
=> 1/2 = sin² α
=> √1/2 = sin α
=> 1/√2 = sin α
cosec α = 1/ sin α = √2
We know that, cot α = cosec α / sec α
=> cot α = √2 / √2
=> cot α = 1
Required answers :-
- cot α = 1
- sin α = 1/√2
- sec α = √2
More formulas :-
- sin² A + cos² A = 1
- sec² A - tan² A = 1
- 1 + cot² A = cosec² A
- sin A = 1/ cosec A
- cosec A = 1/ sin A
- sec A = 1/ cos A
- cos A = 1/ sec A
- tan A = 1/ cot A
- cot A = 1/ tan A
Similar questions