If tan alpha = -2 find the values of sin alpha (alpha lies in 2 quadrant)
Answers
Answered by
8
Answered by
0
Answer:
\textbf{Given:}Given:
tan\;\alpha=-2tanα=−2
\text{Taking reciprocals, we get}Taking reciprocals, we get
cot\;\alpha=\frac{1}{-2}cotα=−21
\text{using}using
\boxed{\bf\;cosec^2A-cot^2A=1}cosec2A−cot2A=1
cosec^2\alpha=1+cot^2\alphacosec2α=1+cot2α
cosec^2\alpha=1+\frac{1}{4}cosec2α=1+41
cosec^2\alpha=\frac{5}{4}cosec2α=45
\text{Taking reciprocals, we get}Taking reciprocals, we get
sin^2\alpha=\frac{4}{5}sin2α=54
sin\;\alpha=\pm\frac{2}{\sqrt{5}}sinα=±52
\text{since $\alpha$ lies in second quadrant, $sin\;\alpha$ is positive }since α lies in second quadrant, sinα is positive
\therefore\boxed{\bf\;sin\;\alpha=\frac{2}{\sqrt{5}}}∴sinα=52
Similar questions
Math,
5 months ago
History,
5 months ago
Computer Science,
5 months ago
English,
9 months ago
CBSE BOARD X,
9 months ago
Math,
1 year ago