Math, asked by royrishabh8946, 11 months ago

If tan alpha = -2 find the values of sin alpha (alpha lies in 2 quadrant)

Answers

Answered by MaheswariS
8

\textbf{Given:}

tan\;\alpha=-2

\text{Taking reciprocals, we get}

cot\;\alpha=\frac{1}{-2}

\text{using}

\boxed{\bf\;cosec^2A-cot^2A=1}

cosec^2\alpha=1+cot^2\alpha

cosec^2\alpha=1+\frac{1}{4}

cosec^2\alpha=\frac{5}{4}

\text{Taking reciprocals, we get}

sin^2\alpha=\frac{4}{5}

sin\;\alpha=\pm\frac{2}{\sqrt{5}}

\text{since $\alpha$ lies in second quadrant, $sin\;\alpha$ is positive }

\therefore\boxed{\bf\;sin\;\alpha=\frac{2}{\sqrt{5}}}

Answered by dhanushree7552
0

Answer:

\textbf{Given:}Given:

tan\;\alpha=-2tanα=−2

\text{Taking reciprocals, we get}Taking reciprocals, we get

cot\;\alpha=\frac{1}{-2}cotα=−21

\text{using}using

\boxed{\bf\;cosec^2A-cot^2A=1}cosec2A−cot2A=1

cosec^2\alpha=1+cot^2\alphacosec2α=1+cot2α

cosec^2\alpha=1+\frac{1}{4}cosec2α=1+41

cosec^2\alpha=\frac{5}{4}cosec2α=45

\text{Taking reciprocals, we get}Taking reciprocals, we get

sin^2\alpha=\frac{4}{5}sin2α=54

sin\;\alpha=\pm\frac{2}{\sqrt{5}}sinα=±52

\text{since $\alpha$ lies in second quadrant, $sin\;\alpha$ is positive }since α lies in second quadrant, sinα is positive 

\therefore\boxed{\bf\;sin\;\alpha=\frac{2}{\sqrt{5}}}∴sinα=52

Similar questions