Math, asked by therealaexgaming, 9 months ago

if tan alpha=3 and sin beta=1/3. Then find cos (alpha-beta). Where alpha nad beta lies in the third and second quadrant.

Answers

Answered by XUVBOY0444
0

Answer:

 \frac{4 \sqrt{5}  - 3 \sqrt{10} }{30}

Step-by-step explanation:

 \tan \alpha  = 3 \\ ⇒  { \tan  }^{2} \alpha  + 1 =  { \sec }^{2}  \alpha  \\ ⇒9 + 1 =  {sec}^{2}  \alpha  \\ ⇒ \sec \alpha  =  -  \sqrt{10}  \: as \: secant \: is \: negative \: in \: 3rd \: quad. \\ ⇒cos \alpha  =  \frac{ - 1}{ \sqrt{10} }  \\ sin \alpha  =   - \sqrt{1 -  \frac{1}{10} }  \\ ⇒sin \:  \alpha  =  \frac{ - 3}{ \sqrt{10} }  \\ sin \:  \beta  =  \frac{1}{3}  \\ cos \:  \beta  =  -  \sqrt{1 -  \frac{1}{9} }  =  \frac{ - 2 \sqrt{2} }{3}  \\ cos( \alpha  -  \beta ) =cos \:  \alpha  \: cos \:  \beta  + sin \:  \alpha  \: sin \:  \beta  \\ ⇒cos( \alpha  -  \beta ) =  \frac{ - 1}{ \sqrt{10} }  \times  \frac{ - 2 \sqrt{2} }{3}  +  \frac{ - 3}{ \sqrt{10} }  \times  \frac{1}{3}  \\ ⇒cos( \alpha  -  \beta ) =  \frac{2 \sqrt{2} - 3 }{3 \sqrt{10} }

AFTER RATIONALIZATION,

cos( \alpha  -  \beta ) =  \frac{4 \sqrt{5} - 3 \sqrt{10}  }{30}

Answered by Sahibpuneet
0

Answer:

please mark me brainliest

Attachments:
Similar questions