Math, asked by manofsteel4535, 10 months ago

If tan.alpha and tan.beta be the roots of x^2 – px + q = 0, then find cos2(alpha + beta).​

Answers

Answered by amitnrw
72

Answer:

 \cos ^{2} ( \alpha   + \beta )  =  \frac{ {(1 - q)}^{2} }{ {p}^{2} +  {(1 -  q) }^{2}  }

Step-by-step explanation:

tan.alpha and tan.beta

roots of

x^2 – px + q = 0,

 \tan( \alpha )  +  \tan( \beta  )  = p \\  \tan( \alpha  \tan( \beta ) )  = q \\

 \tan( \alpha +  \beta  )  =  \frac{ \tan( \alpha )  +  \tan( \beta ) }{1 -  \tan( \alpha)  \tan( \beta ) }

 \tan( \alpha  +  \beta )  =  \frac{p}{1 - q}

 \tan ^{2} ( \alpha  +  \beta )  =  \frac{ {p}^{2} }{ {(1 - q)}^{2} }

   \sec^{2} ( \alpha  +  \beta ) = 1 +  \tan ^{2} ( \alpha  +  \beta )

 \sec ^{2} ( \alpha  +  \beta )  = 1 +  \frac{ {p}^{2} }{ {(1 - q)}^{2} }

 \sec^{2} ( \alpha +   \beta )  =  \frac{ {(1 - q)}^{2} +  {p}^{2}  }{ {(1 - q)}^{2} }

 \cos ^{2} ( \alpha   + \beta )  =  \frac{1}{ \sec ^{2} ( \alpha  +  \beta ) }

 \cos ^{2} ( \alpha   + \beta )  =  \frac{ {(1 - q)}^{2} }{ {p}^{2} +  {(1 -  q) }^{2}  }

Answered by thatsgirijag
2

answer is given in the attachment given below very clearly

Attachments:
Similar questions