Math, asked by ayudhgoldberg, 1 month ago

if tan alpha + cot alpha = 2 then find tan^20 alpha + cot^20 alpha

Answers

Answered by IamIronMan0
51

Answer :

Easy way :

 \tan( \alpha )  +  \cot( \alpha ) = 2 \\  \\  \tan( \alpha )   +  \frac{1}{ \tan(  \alpha ) }  = 2

let

 \tan( \alpha )  = y \\  y +  \frac{1}{y}  = 2 \\  \\  {y}^{2}  + 1 = 2y \\( y - 1) {}^{2}  = 0 \\  \\  \tan( \alpha )  = 1 \:  \: and \:  \:  \:  \:  \cot( \alpha )  = 1

So

\tan {}^{20} ( \alpha )  +  \cot{}^{20} ( \alpha )  = 1 + 1 = 2

Fun way :

 \tan( \alpha )  +  \cot( \alpha )  = 2

say it's equation 1

square both sides

\tan {}^{2} ( \alpha )  +  \cot{}^{2} ( \alpha )  + 2 = 4 \\  \\ \tan {}^{2} ( \alpha )  +  \cot{}^{2} ( \alpha )  = 2

it's equation 2 . Now multiply eq.1 and eq.2

 \{\tan {}^{} ( \alpha )  +  \cot{}^{} ( \alpha ) \}(\tan {}^{2} ( \alpha )  +  \cot{}^{2} ( \alpha )) = 4 \\  \\  \tan {}^{3} ( \alpha )  +  \cot{}^{3} ( \alpha ) +  \tan( \alpha )  +  \cot( \alpha )  = 4 \\  \\ \tan {}^{3} ( \alpha )  +  \cot{}^{3} ( \alpha ) + 2 = 4 \\  \\ \tan {}^{3} ( \alpha )  +  \cot{}^{3} ( \alpha ) = 2

Now either keep multiplying by equation 1 or you can easily proof by induction , that

\tan {}^{n} ( \alpha )  +  \cot{}^{n} ( \alpha ) = 2

All you need to do is put n = 20

Answered by pulakmath007
13

SOLUTION

GIVEN

\displaystyle \sf{ \tan  \alpha  + \cot  \alpha  = 2}

TO DETERMINE

\displaystyle \sf{ {\tan}^{20}  \alpha + {\cot}^{20}  \alpha  }

EVALUATION

Here it is given that

\displaystyle \sf{ \tan  \alpha  + \cot  \alpha  = 2}

\displaystyle \sf{ \implies \: \tan  \alpha + \frac{1}{\tan  \alpha } = 2}

\displaystyle \sf{ \implies \: \frac{{\tan}^{2}  \alpha + 1}{\tan  \alpha } = 2}

\displaystyle \sf{ \implies \: {\tan}^{2}  \alpha  + 1 = 2\tan  \alpha }

 \displaystyle \sf{ \implies \: {\tan}^{2}  \alpha  + 1 - 2\tan  \alpha  = 0}

\displaystyle \sf{ \implies \: {(\tan  \alpha  - 1)}^{2} = 0}

\displaystyle \sf{ \implies \: (\tan  \alpha  - 1) = 0}

\displaystyle \sf{ \implies \: \tan  \alpha   =  1}

\displaystyle \sf{ \implies \cot  \alpha   =  1}

This gives

\displaystyle \sf{ {\tan}^{20}  \alpha  + {\cot}^{20}  \alpha }

 \displaystyle \sf{ = {1}^{20} + {1}^{20} }

 \sf{ =1 + 1}

 = 2

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If cosθ+secθ=√2,find the value of cos²θ+sec²θ

https://brainly.in/question/25478419

2. Value of 3 + cot 80 cot 20/cot80+cot20 is equal to

https://brainly.in/question/17024513

3. In a triangle, prove that (b+c-a)(cotB/2+cotC/2)=2a×cotA/2

https://brainly.in/question/19793971

Similar questions