If tan alpha =cot beta, then find the value of alpha + beta
Answers
Answered by
4
We have:
tan(A)=cot(B) tanA×tanB = 1 {cot B =1/tan A}
since
tan(A+B) = (tan A + tan B)/(1-tanA
× tanB)
tan(A+B)=(tanA+tanB)/(1-1)
tan(A+B)=not defined
A+B=pi/2 [tan(pi/2)=not
defined]
Answered by
0
We have:
tan(A)=cot(B) tanA×tanB = 1 {cot B =1/tan A}
since
tan(A+B) = (tan A + tan B)/(1-tanA
× tanB)
tan(A+B)=(tanA+tanB)/(1-1)
tan(A+B)=not defined
A+B=pi/2 [tan(pi/2)=not
defined]
Similar questions
History,
5 months ago
Math,
5 months ago
Math,
11 months ago
Physics,
11 months ago
Social Sciences,
1 year ago