Math, asked by sritam44, 1 year ago

if tan Alpha equal to root 3 and 10 beta equal to 1 by root 3 find the value of cot alpha + beta


vashisthaparna03: did you mean tan beta?
vashisthaparna03: and cot(alpha+beta)
shanu2002: mens i dont understand what you are trying to say

Answers

Answered by MaheswariS
8

\textsf{Given:}

\mathsf{tan\,\alpha=\sqrt{3}\;\;\&\;\;tan\,\beta=\frac{1}{\sqrt{3}}}

\mathsf{\implies\,\alpha=60^{\circ}\;\;\&\;\;\beta=30^{\circ}}

\textsf{Now}

\mathsf{cot(\alpha+\beta)}

\mathsf{=\frac{1}{tan(\alpha+\beta)}}

\mathsf{=\frac{1}{tan(60^{\circ}+30^{\circ})}}

\mathsf{=\frac{1}{tan90^{\circ}}}

\mathsf{=\frac{1}{\infty}}

\mathsf{=0}

\implies\boxed{\mathsf{cot(\alpha+\beta)=0}}

Answered by vaibhavshinde145
1

Step-by-step explanation:

\textsf{Given:}Given:

\mathsf{tan\,\alpha=\sqrt{3}\;\;\&\;\;tan\,\beta=\frac{1}{\sqrt{3}}}tanα=

3

&tanβ=

3

1

\mathsf{\implies\,\alpha=60^{\circ}\;\;\&\;\;\beta=30^{\circ}}⟹α=60

&β=30

\textsf{Now}Now

\mathsf{cot(\alpha+\beta)}cot(α+β)

\mathsf{=\frac{1}{tan(\alpha+\beta)}}=

tan(α+β)

1

\mathsf{=\frac{1}{tan(60^{\circ}+30^{\circ})}}=

tan(60

+30

)

1

\mathsf{=\frac{1}{tan90^{\circ}}}=

tan90

1

\mathsf{=\frac{1}{\infty}}=

1

\mathsf{=0}=0

\implies\boxed{\mathsf{cot(\alpha+\beta)=0}}⟹

cot(α+β)=0

Similar questions