if tan Alpha equal to root 3 and 10 beta equal to 1 by root 3 find the value of cot alpha + beta
vashisthaparna03:
did you mean tan beta?
Answers
Answered by
8
Answered by
1
Step-by-step explanation:
\textsf{Given:}Given:
\mathsf{tan\,\alpha=\sqrt{3}\;\;\&\;\;tan\,\beta=\frac{1}{\sqrt{3}}}tanα=
3
&tanβ=
3
1
\mathsf{\implies\,\alpha=60^{\circ}\;\;\&\;\;\beta=30^{\circ}}⟹α=60
∘
&β=30
∘
\textsf{Now}Now
\mathsf{cot(\alpha+\beta)}cot(α+β)
\mathsf{=\frac{1}{tan(\alpha+\beta)}}=
tan(α+β)
1
\mathsf{=\frac{1}{tan(60^{\circ}+30^{\circ})}}=
tan(60
∘
+30
∘
)
1
\mathsf{=\frac{1}{tan90^{\circ}}}=
tan90
∘
1
\mathsf{=\frac{1}{\infty}}=
∞
1
\mathsf{=0}=0
\implies\boxed{\mathsf{cot(\alpha+\beta)=0}}⟹
cot(α+β)=0
Similar questions