Math, asked by venkatsumanth72, 11 months ago

if tan Alpha equal to root 3 and tan beta equal to 1 by root 3 then find the value of cot alpha + beta​

Answers

Answered by RvChaudharY50
31

Answer:

Tan A = 3 = Tan 60°

=> A = 60°

Tan B = 1/3 = Tan 30°

=> B = 30°

cot(A+B) = Cot(60+30) = cot90° = 0 (Ans.)

\boxed{Mark\: as\: Brainlist}

Answered by Anonymous
18

Answer:

\bold\red{Value=0}

Step-by-step explanation:

Given,

 \tan( \alpha )  =  \sqrt{3}  \\  \\  =  >  \cot( \alpha ) =   \frac{1}{ \sqrt{3} }

and,

 \tan( \beta )  =  \frac{1}{ \sqrt{3} } \\  \\  =  >  \cot( \beta )   =  \sqrt{3}

Now,

we know that,

 \cot( \alpha  +  \beta )  =  \frac{ \cot( \alpha )  \cot( \beta )  - 1}{ \cot( \alpha )  +  \cot( \beta ) }

Therefore,

we get,

 =  >  \cot( \alpha  +  \beta )  =  \frac{( \sqrt{3}  \times  \frac{1}{ \sqrt{3} })  - 1}{ \sqrt{3}  +  \frac{1}{ \sqrt{3} } }  \\  \\  =  \frac{1 - 1}{ \sqrt{3}  +  \frac{1}{ \sqrt{3} } } \\  \\  = 0

Hence,

Value = 0

Similar questions