Math, asked by LaraJean, 1 year ago

If tan B= nsin A cos A÷1-n cos^2 A
then tan(A + B) equals

Answers

Answered by MaheswariS
3

Answer:

tan(A+B)=\frac{tanA}{1-n}

Step-by-step explanation:

Formula used:

tan(A+B)=\frac{tanA+tanB}{1-tanA\:tanB}

Given:

tanB=\frac{n\:sinA\:cosA}{1-n\:cos^2A}

Divde both Nr. and Dr. by cos^2A

tanB=\frac{\frac{n\:sinA\:cosA}{cos^2A}}{\frac{1-n\:cos^2A}{cos^2A}}

tanB=\frac{\frac{n\:sinA}{cosA}}{sec^2A-n}

tanB=\frac{n\:tanA}{1+tan^2A-n}

Now,

tan(A+B)=\frac{tanA+tanB}{1-tanA\:tanB}

tan(A+B)=\frac{tanA+\frac{n\:tanA}{1+tan^2A-n}}{1-tanA\:\frac{n\:tanA}{1+tan^2A-n}}

tan(A+B)=\frac{\frac{tanA+tan^3A-n\:tanA+n\:tanA}{1+tan^2A-n}}{\frac{1+tan^2A-n-n\:tan^2A}{1+tan^2A-n}}

tan(A+B)=\frac{tanA+tan^3A-n\:tanA+n\:tanA}{1+tan^2A-n-n\:tan^2A}

tan(A+B)=\frac{tanA+tan^3A}{(1+tan^2A)-n(1+tan^2A)}

tan(A+B)=\frac{tanA+tan^3A}{(1+tan^2A)(1-n)}

tan(A+B)=\frac{tanA(1+tan^2A)}{(1+tan^2A)(1-n)}

tan(A+B)=\frac{tanA}{1-n}

Similar questions