If tanβ=cosθtanα , then cot²(θ/2)=
Answers
EXPLANATION.
⇒ tanβ = cosθ.tanα.
As we know that,
We can write equation as,
⇒ cosθ = tanβ/tanα.
As we know that,
Formula of :
⇒ cos2θ = 1 - tan²θ/1 + tan²θ.
We can write = cosθ as,
⇒ cosθ = 1 - tan²(θ/2)/1 + tan²(θ/2).
⇒ [1 + tan²(θ/2)](cosθ) = 1 - tan²(θ/2).
⇒ cosθ + cosθ.tan²(θ/2) = 1 - tan²(θ/2).
⇒ cosθ.tan²(θ/2) + tan²(θ/2) = (1 - cosθ)
⇒ tan²(θ/2)[1 + cosθ] = [1 - cosθ].
As we know that,
⇒ Value of cosθ = tanβ/tanα.
⇒ Put the value in the equation, we get.
⇒ tan²(θ/2)[1 + tanβ/tanα] = [1 - tanβ/tanα].
⇒ tan²(θ/2)[tanα + tanβ/tanα] = [tanα - tanβ/tanα].
⇒ tan²(θ/2)[tanα + tanβ] = [tanα - tanβ].
As we know that,
Formula of :
⇒ tanθ = sinθ/cosθ.
Using this formula in equation, we get.
⇒ tan²(θ/2)[sinα/cosα + sinβ/cosβ] = [sinα/cosα - sinβ/coβ].
⇒ tan²(θ/2)[sinα.cosβ + cosα.sinβ/cosα.cosβ] = [sinα.cosβ - cosα.sinβ/cosα.cosβ].
⇒ tan²(θ/2) [sinα.cosβ + cosα.sinβ] = [sinα.cosβ - cosα.sinβ].
As we know that,
Formula of :
⇒ sin (α ± β) = sinα.cosβ ± cosα.sinβ.
Using this formula in equation, we get.
⇒ tan²(θ/2)[sin(α + β)] = [sin(α - β)].
⇒ tan²(θ/2) = [sin(α - β)]/[sin(α + β)].
As we know that,
⇒ tanθ = 1/cotθ.
Using this formula in equation, we get.
⇒ 1/cot²(θ/2) = [sin(α - β)]/[sin(α + β)].
⇒ [sin(α - β)][cot²(θ/2)] = [sin(α + β)].
⇒ cot²(θ/2) = [sin(α + β)]/[sin(α - β)].
MORE INFORMATION.
Properties of inverse trigonometric functions.
(1) = sin⁻¹(sinθ) = θ provided that = -π/2 ≤ θ ≤ π/2.
(2) = cos⁻¹(cosθ) = θ provided that = 0 ≤ θ ≤ π.
(3) = tan⁻¹(tanθ) = θ provided that = -π/2 < θ < π/2.
(4) = cot⁻¹(cotθ) = θ provided that = 0 < θ < π.
(5) = sec⁻¹(secθ) = θ provided that = 0 ≤ θ < π/2 Or π/2 < θ ≤ π.
(6) = cosec⁻¹(cosecθ) = θ provided that = -π/2 ≤ θ < 0 Or 0 < θ ≤ π/2.
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Formula for this question :-
cos2θ = 1-tan ² θ / 1 + tan ² θ
- cosθ
cos θ = 1-tan²(θ/2) / 1 + tan² (θ/2)
- [1 + tan² (θ/2) ] (cosθ) = 1- tan² (θ/2)
- cosθ + cosθ.tan²(θ/2) = 1 - tan²(θ/2)
- cosθ.tan²(θ/2) + tan²(θ/2) = (1 - cosθ)
- tan²(θ/2) [1 + cosθ] = [1 - cos θ]
Value of cos θ = tanβ / tanα
- tan²(θ/2)[1 + tanβ/tanα] = [1-tanβ/tanα].
- tan²(θ/2)[tanα + tanβ/tanα] = [tanα - tanβ/tanα]
- tan² (θ/2) [tanα + tanβ] = [tanα - tanβ]
➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖
Formula tan θ = sinθ / cosθ
- tan²(θ/2)[sinα/cosα + sinβ/cosβ] = [sinα/cosα - sinβ/coβ].
- tan²(θ/2)[sinα.cosβ + cosα.sinβ/cosα.cosβ] = [sinα.cosβ - cosα.sinβ/cosα.cosβ].
- tan²(θ/2) [sinα.cosβ + cosα.sinβ] = [sinα.cosβ - cosα.sinβ]
➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖
Formula of sin (α ± β) = sinα.cosβ ± cosα.sinβ
- tan²(θ/2)[sin(α + β)] = [sin(α - β)].
- tan²(θ/2) = [sin(α - β)]/[sin(α + β)].
☞ tanθ = 1/cot θ
- 1/cot²(θ/2) = [sin(α - β)]/[sin(α + β)].
- [sin(α - β)][cot²(θ/2)] = [sin(α + β)].
- cot²(θ/2) = [sin(α + β)]/[sin(α - β)].
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
hope it helps