If tanθ−cotθ=0 find the value of sinθ+cosθ
#Ntse.
Answers
Answered by
9
tan= cot= 1 at 45°
then sin45+cos 45= 2/√2 =√2
then sin45+cos 45= 2/√2 =√2
Answered by
12
tan θ - cot θ=0
tan θ =cot θ
we know that, tan45=cot45= 1
so θ=45°
sinθ+cosθ
=sin45+cos45
=1/√2+1/√2
=2(1/√2)
=√2
or
tanθ−cotθ=0
tan θ=cot θ
sin θ /cos θ =cos θ / sin θ
sin² θ=cos² θ
sin θ =cos θ
so,sin θ+cos θ
=sin θ+sin θ=2sin θ
=cos θ+cos θ=2cos θ
hope helped !^
tan θ =cot θ
we know that, tan45=cot45= 1
so θ=45°
sinθ+cosθ
=sin45+cos45
=1/√2+1/√2
=2(1/√2)
=√2
or
tanθ−cotθ=0
tan θ=cot θ
sin θ /cos θ =cos θ / sin θ
sin² θ=cos² θ
sin θ =cos θ
so,sin θ+cos θ
=sin θ+sin θ=2sin θ
=cos θ+cos θ=2cos θ
hope helped !^
Similar questions