If tan θ+ cot θ=2,find the value of tan²θ+ cot² θ
Answers
Answered by
6
Theta is written as A,
tanA + cotA = 2
Square on both sides,
( tanA + cot A )² = 2²
tan²A + cot²A + 2 tanA cotA = 4
tan²A + cot²A + 2( tanA × 1 / tanA ) = 4
tan²A + cot²A + 2( 1 ) = 4
tan²A + cot²A + 2 = 4
tan²A + cot²A = 4 - 2
tan²A + cot²A = 2
tanA + cotA = 2
Square on both sides,
( tanA + cot A )² = 2²
tan²A + cot²A + 2 tanA cotA = 4
tan²A + cot²A + 2( tanA × 1 / tanA ) = 4
tan²A + cot²A + 2( 1 ) = 4
tan²A + cot²A + 2 = 4
tan²A + cot²A = 4 - 2
tan²A + cot²A = 2
sanjaycharanr:
Pls Mark me brainliest
Answered by
3
Tan theta + cot theta =2
(Tan theta + cot theta)^2=4
Tan^2theta + cot^theta +2tanthetacottheta =4
Since tan theta=1/cot theta,tan theta and cot theta gets cancelled in 2tan theta ×cot theta,leaving only 2.
Tan^2theta + cot^theta +2=4
So Tan^2thet + cot^2theta=2
Similar questions
Math,
7 months ago
Math,
7 months ago
Biology,
1 year ago
Math,
1 year ago
Social Sciences,
1 year ago