If tan+cot=2 then sin+cos=?
Answers
Answered by
1
Answer:
tanθ+cotθ=2
sinθ/cosθ+cosθ/sinθ =2
sin²θ+cos²θ/cosθsinθ =2
1/cosθsinθ =2
cosθsinθ=1/2
(sinθ+cosθ)²=sin²θ +cos²θ +2sinθcosθ
(sinθ+cosθ)²=1+2*1/2
(sinθ+cosθ)²=1+1=2
sinθ+cosθ=√2
Step-by-step explanation:
Answered by
0
Answer:
√2
Step-by-step explanation:
we have,
tanx+cotx = 2
sinx/cosx+cosx/sinx = 2
(sin²x+cos²x)/sinxcosx = 2
1/sinxcosx = 2
1 = 2sinxcosx
so, 1 = sin2x
as we know,,
sin²x+cos²x = 1
can also be written as,
(sinx+cosx)²-sin2x = 1
(sinx+cosx)²-1 = 1
(sinx+cosx)² = 2
so, sinx+cosx = √2 ....ans.
Similar questions