Math, asked by adityasingh2202234, 18 days ago

If tan α + cot α = 2, then tan^20α + cot^20α =​

Answers

Answered by SultanAfridi
61

Answer:

ans is 2

Step-by-step explanation:

tan \alpha  + cot \alpha  = 2 \\ tan \alpha  +  \frac{1}{tan \alpha }  = 2 \\    {(tan \alpha )}^{2}  + 1 = 2tan \alpha  \\   { \sec( \alpha ) }^{2}   = 2 \tan( \alpha )  \\  \frac{1}{ { \cos( \alpha ) }^{2} }  = 2 \frac{ \sin( \alpha ) }{ \cos( \alpha ) }  \\  \frac{1}{ \cos( \alpha ) }  = 2 \sin( \alpha )  \\ 1 = 2 \sin( \alpha  )  \cos( \alpha )  \\ 1 =  \sin(2 \alpha )  \\  \sin(90)  =  \sin(2 \alpha )  \\ 90 = 2 \alpha  \\  \alpha  = 45 \\  \\ thus \: \:  \:   { \tan(45) }^{20}  +   { \cot(45) }^{20}  \\  {1}^{20}  +  {1}^{20}  = 1 + 1 = 2 \:  \: required \: answer

Answered by Swarup1998
9

The other user has already given an easier solution to this problem. Let me answer the problem with another approach.

Given data:

tan\alpha+cot\alpha=2

To find:

tan^{20}\alpha+cot^{20}\alpha

Step-by-step explanation:

Given, tan\alpha+cot\alpha=2

Squaring both sides, we get

\quad tan^{2}\alpha+cot^{2}\alpha+2\:tan\alpha\:cot\alpha=4

\Rightarrow tan^{2}\alpha+cot^{2}\alpha+2=4\quad[\because tan\alpha\:cot\alpha=1]

\Rightarrow tan^{2}\alpha+cot^{2}\alpha=2

Similarly, we get tan^{4}\alpha+cot^{4}\alpha=2,

tan^{8}\alpha+cot^{8}\alpha=2 and

tan^{16}\alpha+cot^{16}\alpha=2

Now, (tan^{16}\alpha+cot^{16}\alpha)(tan^{4}\alpha+cot^{4}\alpha)

=tan^{20}\alpha+cot^{20}\alpha+tan^{16}\alpha\:cot^{4}\alpha+tan^{4}\alpha\:cot^{16}\alpha

=tan^{20}\alpha+cot^{20}\alpha+tan^{12}\alpha+cot^{12}\alpha

\Rightarrow 2\times 2=tan^{20}\alpha+cot^{20}\alpha+tan^{12}\alpha+cot^{12}\alpha

\Rightarrow tan^{20}\alpha+cot^{20}\alpha=4-(tan^{12}\alpha+cot^{12}\alpha) ... ... (i)

Now (tan^{8}\alpha+cot^{8}\alpha)(tan^{4}\alpha+cot^{4}\alpha)

=tan^{12}\alpha+cot^{12}\alpha+tan^{8}\alpha\:cot^{4}\alpha+tan^{4}\alpha\:cot^{8}\alpha

=tan^{12}\alpha+cot^{12}\alpha+tan^{4}\alpha+cot^{4}\alpha

=tan^{12}\alpha+cot^{12}\alpha+2\quad [\because tan^{4}\alpha+cot^{4}\alpha=2]

\Rightarrow 2\times 2=tan^{12}\alpha+cot^{12}\alpha+2

\Rightarrow tan^{12}\alpha+cot^{12}\alpha=4-2

\Rightarrow tan^{12}\alpha+cot^{12}\alpha=2

From (i), we get

\quad tan^{20}\alpha+cot^{20}\alpha=4-2

\Rightarrow tan^{20}\alpha+cot^{20}\alpha=2

Answer: \tan^{20}\alpha+cot^{20}\alpha=2

Similar questions