Math, asked by annika1465, 1 year ago

If tan + cot = 7, then find the value of tan2 + cot2 .

Answers

Answered by abhi569
6

Answer:

Required numeric value of tan^2 A + cot^2 A is 47.

Step-by-step explanation:

Given,

        tanA + cotA = 7

Square on both sides :

= > ( tanA + cotA )^2 = 7^2

From the properties of expansion :

  • ( a + b )^2 = a^2 + b^2 + 2ab

= > ( tanA )^2 + ( cotA )^2 + 2tanAcotA = 49

= > tan^2 A + cot^2 A + 2tanA( 1 / tanA ) = 49                { cotA = 1 / tanA }

= > tan^2 A + cot^2 A + 2( 1 ) = 49

= > tan^2 A + cot^2 A + 2 = 49

= > tan^2 A + cot^2 A = 47

Hence the required numeric value of tan^2 A + cot^2 A is 47.

Answered by throwdolbeau
5

Answer:

tan²A + cot²A = 47.

Step-by-step explanation:

Given,

  ➾ tanA + cotA = 7

Squaring on both sides :

( tanA + cotA )² = 7²

∴ [ (a + b)² = a² + b² + 2ab ]

➾( tan² A + cot² A + 2 tanA ∙ cotA ) = 49

∴ [ cotA = 1/ tanA ]

➾ tan² A + cot² A + 2 tanA ∙ 1/tanA = 49

➾ tan² A + cot² A + 2 = 49

➾ tan² A + cot² A = 49 - 2

tan² A + cot² A = 47

Similar questions