Math, asked by aypztmpcovdzylqkd97, 6 months ago

if tanΘ=m/n then prove that mSinΘ-nCosΘ/mSinΘ+nCosΘ=m²-n²/m²+n²

Answers

Answered by sreeh123flyback
3

Step-by-step explanation:

this is the answer okkkkkkkkkkkk

Attachments:
Answered by MagicalBeast
10

Let : I have taken value of angle as "x" in place of theta.

Given :

  •  \tan(x)  =  \dfrac{m}{n}

To prove :

 \dfrac{m \sin(x) - n \cos(x)  }{m \sin(x) + n \cos(x)  }  =  \dfrac{ {m}^{2} -  {n}^{2}  }{ {m}^{2}  +  {n}^{2} }

Identity used :

  • tan ∅ = sin ∅ ÷ cos ∅

Solution :

 \bullet \:  \tan(x)  =  \dfrac{m}{n}  \\  \\  \bullet \:  \dfrac{ \sin(x) }{ \cos(x) }  \:  =  \:  \dfrac{m}{n}  \\  \\  \bullet \:  \sin(x)  =  \: ( \dfrac{m}{n} ) \cos(x)

Now ,

LHS \implies \: \dfrac{m \sin(x) - n \cos(x)  }{m \sin(x) + n \cos(x)  }   \\  \\  putting \: value \: of \:  \sin(x)  \: in \: above \: we \: get \\  \\  \implies \dfrac{m \times  (\dfrac{m}{n} \cos(x) ) - n \cos(x)  }{m  \times (\dfrac{m}{n} \cos(x)) + n \cos(x)}  \\  \\  \\  \implies \:  \dfrac{  \dfrac{ {m}^{2} \cos(x) }{n} - n \cos(x)   }{ \dfrac{ {m}^{2} \cos(x)  }{n} + n \cos(x)  }  \\  \\taking \: lcm  \\  \implies \:  \dfrac{ \dfrac{ {m}^{2} \cos(x) \:  - n \times n \cos(x)   }{n} }{ \dfrac{ {m}^{2} \cos(x)  + n \times n \cos(x)  }{n} }

Taking , ( cos (x) ÷ n ) common from numerator & denominator

we get;

 \implies \:  \dfrac{ \dfrac{ \cos(x) }{n} ( {m}^{2}  -  {n}^{2} )}{ \dfrac{ \cos(x) }{n}( {m}^{2}  +  {n}^{2}) }  \\  \\  \dfrac{ \cos(x) }{n}  \: get \: cancelled \\  \\  \implies \:  \dfrac{( {m}^{2} -  {n}^{2} ) }{( {m}^{2}  +  {n}^{2}) }  \:  =  \: RHS

Hence PROVED

Similar questions