Math, asked by annapurnaswain6237, 11 months ago

If tan Q + cot Q = 4 then tan⁴Q + cot⁴Q =

Answers

Answered by mysticd
0

Answer:

\red { Value \: of \: tan^{4} Q + cot^{4} Q}\green {= 194 }

Step-by-step explanation:

 Given \: tan \:Q + cot\:Q = 4 \:--(1)

/* On squaring both sides, we get

 (tan \:Q + cot\:Q)^{2} = 4^{2}

 \implies tan^{2} Q + cot^{2} Q+ 2tanQcotQ = 16

 \implies tan^{2} Q + cot^{2} Q+ 2 = 16

 \boxed { \pink { tanQcotQ = 1 }}

 \implies tan^{2} Q + cot^{2} Q = 16 - 2

 \implies tan^{2} Q + cot^{2} Q = 14 \: ---(2)

\* On squaring both sides, we get

 \implies( tan^{2} Q + cot^{2} Q)^{2} = 14^{2}

 \implies tan^{4} Q + cot^{4} Q+ 2tan^{2}Qcot^{2}Q = 196

 \implies tan^{4} Q + cot^{4} Q+ 2= 196

 \implies tan^{4} Q + cot^{4} Q= 196-2\\= 194

Therefore.,

\red { Value \: of \: tan^{4} Q + cot^{4} Q}\green {= 194 }

•••♪

Similar questions