If tan Φ + sin Φ = m, and tan Φ-sin Φ=n, find the value of sinΦ*cosΦ.
Answers
Answered by
33
Answer:-
Let Φ = A.
Given:
tan A + sin A = m -- equation (1)
tan A - sin A = n -- equation (2).
Add equations (1) & (2).
→ tan A + sin A + tan A - sin A = m + n
→ 2tan A = m + n
→ tan A = (m + n) / 2
Putting the value of tan A in equation (1) we get,
→ (m + n) / 2 + sin A = m
→ sin A = m - (m + n) / 2
→ sin A = (2m - m - n) / 2
→ sin A = (m - n) / 2
- tan A = sin A/cos A
Hence,
→ sin A/cos A = (m + n) / 2
→ 1/cos A * (m - n) / 2 = (m + n) / 2
→ cos A = [ (m + n) / 2 ] * (2 / m - n )
→ cos A = m + n / m - n
Now,
→ sin A * cos A = (m - n) / 2 * (m + n) / (m - n)
→ sin A * cos A = (m - n)(m + n) / 2 * (m - n)
→ sin A * cos A = (m + n) / 2
Answered by
1
Answer:
Sorry dear,
Step-by-step explanation:
...........
Similar questions