Math, asked by tanu6753, 30 days ago

if tanθ + sinθ = m and tanθ - sinθ = n prove that (m^2 - n^2) = 4√mn ​

Answers

Answered by BrainlyTwinklingstar
1

Given that,

 \rm tan\theta + sin \theta  = m

 \rm tan\theta - sin\theta = n

To prove,

 \rm(m^2 - n^2) = 4 \sqrt{mn}

Proof,

\rm LHS = (m^2 - n^2)

 \rm =  (tan\theta + sin \theta)^2 - (tan\theta  -  sin \theta)^2

we know that,

(a + b)² - (a - b)² = 4ab

  \rm = 4 \:  tan\theta \: sin \theta

Now,

 \rm \: RHS = 4 \sqrt{mn}

 \rm = 4 \sqrt{(tan\theta + sin \theta)(tan\theta  -  sin \theta)}

 \rm = 4 \sqrt{(tan\theta ^{2}  -  sin \theta^{2} )}

 \rm = 4 \sqrt{ \bigg(  \dfrac{ {sin}^{2} \theta }{ {cos}^{2} \theta }   -  sin \theta^{2}  \bigg)}

 \rm = 4 \sqrt{ \bigg(  \dfrac{ {sin}^{2} \theta -  sin \theta^{2} {cos}^{2} \theta }{ {cos}^{2} \theta } \bigg)}

 \rm = 4 \sqrt{ \dfrac{ {sin}^{2} \theta(1 -  {cos}^{2} \theta )}{ {cos}^{2} \theta}}

  \rm = 4 \:    \dfrac{sin\theta}{ cos\theta} \sqrt{(1 -  {cos}^{2} \theta )}

  \rm = 4 \:  tan\theta \: sin \theta

Hence, LHS = RHS

so,

 \rm(m^2 - n^2) = 4 \sqrt{mn}

Hence proved !!

Similar questions