If (tan θ + sin θ)=m and (tan θ-sin θ)=n, prove that --
Pleasa provide good answer and I will mark you brainliest !!! #boards2020
Answers
Answered by
1
Answer:
Step-by-step explanation:
(tan θ + sin θ)=m & (tan θ-sin θ)=n
m²=tan² θ + sin² θ + 2 tan θ sin θ
n²=tan² θ + sin² θ - 2 tan θ sin θ
Subtracting,
m²-n²= 4 tan θ sin θ
Squaring,
(m²-n²)² = 16 tan² θ sin² θ .....(1)
Also, mn = (tan θ + sin θ)(tan θ-sin θ) =(tan² θ - sin² θ)
mn = (sin² θ/cos²θ - sin²θ) = sin²θ(1/cos²θ - 1) = sin²θ(1-cos²θ)/cos²θ
or mn = (sin²θ/cos²θ) (1-cos²θ) = tan²θ sin²θ ......(2)
From (1) & (2), we have
(m²-n²)² = 16mn
Hence proved.
Similar questions