If tan θ + sin θ = m and tan θ − sin θ = n , the show that m2 − n2 = 4 √mn
Answers
Answered by
2
Answer:
Step-by-step explanation:
m = Tanθ + Sinθ, n = Tanθ - Sinθ
L.H.S
m² - n² = (Tanθ + Sinθ)² - (Tanθ - Sinθ)² = 4TanθSinθ.
R.H.S
4√mn = 4√[(Tanθ + Sinθ)(Tanθ - Sinθ)]
= 4√(Tan²θ - Sin²θ)
= 4√[(Sin²θ/Cos²θ - Sin²θ)]
//Take Sin²θ common
= 4√[Sin²θ ( 1/Cos²θ - 1)]
= 4√[Sin²θ(1 - Cos²θ/Cos²θ)]
= 4√(Sin²θ * Sin²θ/Cos²θ ) ( ∵ 1 - Cos²θ = Sin²θ)
= 4√(Sin⁴θ/Cos²θ)
= 4Sin²θ/Cosθ
= 4TanθSinθ
Hence L.H.S = R.H.S and thus proved.
Similar questions