Math, asked by panikb2100, 1 year ago

If tanθ + sinθ = m and tanθ – sinθ = n, then prove that m^2 – n^2 = 4sinθ tanθ

Answers

Answered by help46
0
Namaste... Prove is really easy... First try it again then see the the solution i gave...
Attachments:
Answered by chintalasujat
0

Answer:

Step-by-step explanation:

tanθ+sinθ=m and tanθ-sinθ=n

∴, m²-n²

=(m+n)(m-n)

=(tanθ+sinθ+tanθ-sinθ)(tanθ+sinθ-tanθ+sinθ)

=(2tanθ)(2sinθ)

=4tanθsinθ

4√mn

=4√(tanθ+sinθ)(tanθ-sinθ)

=4√(tan²θ-sin²θ)

=4√{(sin²θ/cos²θ)-sin²θ}

=4√sin²θ{(1/cos²θ)-1}

=4sinθ√{(1-cos²θ)/cos²θ}

=4sinθ√(sin²θ/cos²θ)

=4sinθ√tan²θ

=4sinθtanθ

∴, LHS=RHS (Proved)

Similar questions