If tanΦ+sinΦ=m and tanΦ-sinΦ show that m^2-n^2 = 4√(mn). Please answer neatly and explain completely
Answers
Answered by
3
Here is the solution in the below pics:-
Hope it helps u..
Hope it helps u..
Attachments:
sagarpatel12819:
Aa second ma direct sin^2 commen nikadine sec^2-1 =tan^2 thay atale sin^2.tan^2 thaijase
Answered by
4
tan∅ + sin∅ = m--------(1)
tan∅ - tan∅ = n -------(2)
take square both equations and subtract (1) - (2)
( tan∅+ sin∅)² - ( tan∅-sin∅)² = m²-n²
tan²∅ +sin²∅+2sin∅.tan∅ -tan²∅-sin²∅+2sin∅.tan∅ = m²-n²
4tan∅.sin∅ = m² - n² ---------(2)
now,
multiply equation (1)and (2)
(tan∅+ sin∅)(tan∅-sin∅) = mn
tan²∅-sin²∅ =mn
sin²∅/cos²∅ - sin²∅ = mn
sin²∅( 1 - cos²∅)/cos²∅ = mn
sin²∅(sin²∅)/cos²∅ = mn
sin²∅.tan²∅ =mn
sin∅.tan∅ =√mn
now , value of sin∅.tan∅ put in eqn (2)
4√mn = m² -n²
hence, proved//
tan∅ - tan∅ = n -------(2)
take square both equations and subtract (1) - (2)
( tan∅+ sin∅)² - ( tan∅-sin∅)² = m²-n²
tan²∅ +sin²∅+2sin∅.tan∅ -tan²∅-sin²∅+2sin∅.tan∅ = m²-n²
4tan∅.sin∅ = m² - n² ---------(2)
now,
multiply equation (1)and (2)
(tan∅+ sin∅)(tan∅-sin∅) = mn
tan²∅-sin²∅ =mn
sin²∅/cos²∅ - sin²∅ = mn
sin²∅( 1 - cos²∅)/cos²∅ = mn
sin²∅(sin²∅)/cos²∅ = mn
sin²∅.tan²∅ =mn
sin∅.tan∅ =√mn
now , value of sin∅.tan∅ put in eqn (2)
4√mn = m² -n²
hence, proved//
Similar questions